API

Modules

Types and constants

    Functions and macros

    Documentation

    LegendSpecFits.LQ_cutMethod
    DEP_µ::Unitful.Energy, DEP_σ::Unitful.Energy, e_cal::Vector{<:Unitful.Energy}, lq_classifier::Vector{Float64}; cut_sigma::Float64=3.0, truncation_sigma::Float64=2.0)

    Evaluates the cutoff value for the LQ cut. The function performs a binned gaussian fit on the sidebandsubtracted LQ histogram and evaluates the cutoff value difined at 3σ of the fit.

    Returns

    * `result`: NamedTuple of the cutoff value
    * `report`: NamedTuple of the fit result, fit report and temporary histograms
    source
    LegendSpecFits._fit_fwhm_ftMethod
    _fit_fwhm_ft(e_grid::Matrix, e_grid_ft::StepRangeLen{Quantity{<:T}, Base.TwicePrecision{Quantity{<:T}}, Base.TwicePrecision{Quantity{<:T}}, Int64}, rt::Unitful.RealOrRealQuantity, min_e::T, max_e::T, nbins::Int64, rel_cut_fit::T; default_ft::Quantity{T}=3.0u"µs", ft_fwhm_tol::Unitful.Energy{<:Real} = 0.1u"keV") where {T <:Real}

    Fit the FWHM values in e_grid for each FT in e_grid_ft with a Gamma Peakshape and return the optimal FT and the corresponding FWHM value. The cut values cut for each flat-top time a window for better histogramming.

    Arguments

    • e_grid: 2D array of energy values for each FT in e_grid_ft
    • e_grid_ft: 1D array of FT values for which the FWHM values in e_grid are calculated
    • rt: RT value for which the FWHM values in e_grid are calculated
    • min_e: minimum energy value to consider for the fit
    • max_e: maximum energy value to consider for the fit
    • nbins: number of bins to use for the histogram of energy values
    • rel_cut_fit: relative cut value to use for the fit
    • ft_fwhm_tol: search for lowest "optimal" ft within minimum(fwhm) + ft_fwhm_tol to avoid artificially large ft

    Returns

    • ft: optimal FT value
    • min_fwhm: corresponding FWHM value
    source
    LegendSpecFits._fit_fwhm_ft_ctcMethod
    _fit_fwhm_ft_ctc(e_grid::Matrix, e_grid_ft::StepRangeLen, qdrift::Vector{<:Real}, rt::Unitful.RealOrRealQuantity, min_e::T, max_e::T, nbins::Int64, rel_cut_fit::T; default_ft::Quantity{T}=3.0u"µs", peak::Unitful.Energy{<:Real}=2614.5u"keV", window::Tuple{<:Unitful.Energy{<:Real}, <:Unitful.Energy{<:Real}}=(35.0u"keV", 25.0u"keV"), ft_fwhm_tol::Unitful.Energy{<:Real} = 0.1u"keV") where {T <:Real}

    Fit the FWHM values in e_grid for each FT in e_grid_ft with a Gamma Peakshape and return the optimal FT and the corresponding FWHM value. The cut values cut for each flat-top time a window for better histogramming.

    Arguments

    • e_grid: 2D array of energy values for each FT in e_grid_ft
    • e_grid_ft: 1D array of FT values for which the FWHM values in e_grid are calculated
    • qdrift: drift time values for each energy value in e_grid
    • rt: RT value for which the FWHM values in e_grid are calculated
    • min_e: minimum energy value to consider for the fit
    • max_e: maximum energy value to consider for the fit
    • nbins: number of bins to use for the histogram of energy values
    • rel_cut_fit: relative cut value to use for the fit
    • ft_fwhm_tol: search for lowest "optimal" ft within minimum(fwhm) + ft_fwhm_tol to avoid artificially large ft

    Returns

    • ft: optimal FT value
    • min_fwhm: corresponding FWHM value
    source
    LegendSpecFits._get_model_countsMethod
    _get_model_counts(f_fit::Base.Callable,v_ml::Union{NamedTuple, AbstractVector},bin_centers::StepRangeLen,bin_widths::StepRangeLen)

    aux. function to get modelled peakshape based on histogram binning and best-fit parameter

    source
    LegendSpecFits.advanced_time_and_memory_controlMethod
    advanced_time_and_memory_control(x::Optim.OptimizationState, start_time::Float64, time_to_setup::Float64; time_limit::Float64=60.0, mem_limit::Float64=30.0)
    
    Control function to stop optimization based on time and memory usage.

    Arguments

    • x::Optim.OptimizationState: optimization state
    • start_time::Float64: start time
    • time_to_setup::Float64: time to setup
    • time_limit::Float64: time limit
    • mem_limit::Float64: memory limit

    Return

    • Bool: true if optimization should stop
    source
    LegendSpecFits.aoe_compton_background_peakshapeMethod
    aoe_compton_background_peakshape(
        x::Real, μ::Real, σ::Real,
        background::Real, δ::Real
    )

    Describes the background shape of a typical A/E Compton peak in a detector as a step like background for MSE events.

    source
    LegendSpecFits.aoe_compton_peakshapeMethod
    aoe_compton_peakshape(
        x::Real, μ::Real, σ::Real, n::Real,
        background::Real, δ::Real
    )

    Describes the shape of a typical A/E Compton peak in a detector as a gaussian SSE peak and a step like background for MSE events.

    source
    LegendSpecFits.aoe_compton_peakshape_componentsMethod
    aoe_compton_peakshape_components(fit_func::Symbol; background_center::Real)

    This function defines the components (signal, low/high-energy tail, backgrounds) of the fit function used in gamma specfits. These component functions are used in the fit-report and in plot receipes

    source
    LegendSpecFits.array_to_tupleMethod
    array_to_tuple(a::AbstractArray, as_nt::NamedTuple)

    Return a NamedTuple with the values of a in the order given by fieldnames(as_nt).

    source
    LegendSpecFits.autocal_energyMethod
    autocal_energy(e::AbstractArray{<:Real}, photon_lines::Vector{<:Unitful.RealOrRealQuantity}; min_e::Real=100, max_e_binning_quantile::Real=0.5, σ::Real = 2.0, threshold::Real = 50.0, min_n_peaks::Int = length(photon_lines), max_n_peaks::Int = 4 * length(photon_lines), α::Real = 0.01, rtol::Real = 5e-3)

    Compute an energy calibration from raw reconstructed energy deposition values based on a given number of known photon lines which are contained in the spectrum

    source
    LegendSpecFits.background_peakshapeMethod
    background_peakshape(
    x::Real, μ::Real, σ::Real, 
    step_amplitude::Real, background::Real; 
    background_slope::Real = 0.0, background_exp = 0.0, background_center::Real = µ

    )

    Describes the background part of the shape of a typical gamma peak in a detector: components:

    • step-function scaled with step_amplitude`
    • energy-independent background: background`
    • linear slope: background_slope (optional)
    • exponential decay: background_exp (optional)
    source
    LegendSpecFits.baseline_qcMethod
    baseline_qc(data, qc_config)

    Perform simple Gaussian fits on the baseline disitrbutions for a given data set.

    Returns

    • result: Namedtuple containing the cut and fit results for each baseline variable
    • report: Namedtuple containing plotable objects.
    source
    LegendSpecFits.chi2fitMethod
    fit_chisq(x::AbstractVector{<:Real},y::AbstractVector{<:Real},yerr::AbstractVector{<:Real}, f_fit::Function;pull_t::Vector{<:NamedTuple} = fill(NamedTuple(), first(methods(f_fit)).nargs - 2), v_init::Vector = [])

    Least square fit with chi2 minimization

    Input:

    • x : x-values
    • y : y-values
    • yerr : 1 sigma uncertainty on y
    • ffit : fit/model function. e.g. for a linear function: flin(x,p1,p2) = p1 .* x .+ p2

    The numer of fit parameter is determined with first(methods(f_fit)).nargs - 2. That's why it's important that ffit has the synthax f(x,arg1,arg2,arg3,...) pullt : pull term, a vector of NamedTuple with fields mean and std. A Gaussian pull term is added to the chi2 function to account for systematic uncertainties. If left blank, no pull term is used. v_init : initial value for fit parameter optimization. If left blank, the initial value is set to 1 or guessed roughly for all fit parameters

    Return:

    • result : NamedTuple with the optimized fit parameter and the fit function
    • report:
    source
    LegendSpecFits.ctc_energyFunction
    ctc_energy(e::Array{T}, qdrift::Array{T}, peak::T, window::T) where T<:Real

    Correct for the drift time dependence of the energy by minimizing the ratio of the FWHM and the peak height of the peak around peak in e with a cut window of window. The drift time dependence is given by qdrift.

    Returns

    * `peak`: peak position
    * `window`: window size
    * `fct`: correction factor
    * `fwhm_before`: FWHM before correction
    * `fwhm_after`: FWHM after correction
    * `func`: function to correct energy
    * `func_generic`: generic function to correct energy
    source
    LegendSpecFits.cut_single_peakMethod
    cut_single_peak(x::Array, min_x::Float64, max_x::Float64,; n_bins::Int=-1, relative_cut::Float64=0.5)

    Cut out a single peak from the array x between min_x and max_x. The number of bins is the number of bins to use for the histogram. The relative cut is the fraction of the maximum counts to use for the cut.

    Returns

    * `max`: maximum position of the peak
    * `low`: lower edge of the cut peak
    * `high`: upper edge of the cut peak
    source
    LegendSpecFits.double_gaussianMethod
    double_gaussian(
        x::Real, μ1::Real, σ1::Real, n1::Real, 
        μ2::Real, σ2::Real, n2::Real
    )

    Evaluates the sum of two gaussians at x with parameters μ1, σ1, n1, μ2, σ2, n2.

    source
    LegendSpecFits.estimate_fwhmMethod
    estimate_fwhm(v::NamedTuple, v_err::NamedTuple)

    Get the FWHM of a peak from the fit parameters.

    Returns

    * `fwhm`: the FWHM of the peak
    source
    LegendSpecFits.estimate_single_peak_statsMethod
    estimate_single_peak_stats(h::Histogram, calib_type::Symbol=:th228)

    Estimate statistics/parameters for a single peak in the given histogram h.

    h must only contain a single peak. The peak should have a Gaussian-like shape. calib_type specifies the calibration type. Currently :th228, :psd and :simple is implemented..

    Returns

    NamedTuple with the fields * peak_pos: estimated position of the peak (in the middle of the peak) * peak_fwhm: full width at half maximum (FWHM) of the peak * peak_sigma: estimated standard deviation of the peak * peak_counts: estimated number of counts in the peak * mean_background: estimated mean background value

    source
    LegendSpecFits.ex_step_gaussMethod
    ex_step_gauss(x::Real, l::Real, k::Real, t::Real, d::Real)

    Evaluates an extended step gauss model at x with parameters l, k, t and d.

    source
    LegendSpecFits.expand_varsMethod
    expand_vars(v::NamedTuple)::StructArray

    Expand all fields in v (scalars or arrays) to same array size and return a StructArray.

    source
    LegendSpecFits.exponential_decayMethod
    exponential_decay(x::Real, amplitude::Real, decay::Real, offset::Real)

    Evaluates an exponential decay function at x with parameters amplitude, decay and offset.

    source
    LegendSpecFits.fit_aoe_comptonMethod
    fit_aoe_compton(peakhists::Array, peakstats::StructArray, compton_bands::Array{T}) where T<:Real

    Fit the A/E Compton bands using the f_aoe_compton function consisting of a gaussian SSE peak and a step like background for MSE events.

    Returns

    * `result`: Dict of NamedTuples of the fit results containing values and errors for each compton band
    * `report`: Dict of NamedTuples of the fit report which can be plotted for each compton band
    source
    LegendSpecFits.fit_aoe_compton_combinedMethod
    fit_aoe_compton_combined(peakhists::Vector{<:Histogram}, peakstats::StructArray, compton_bands::Array{T}, result_corrections::NamedTuple; pars_aoe::NamedTuple{(:μ, :μ_err, :σ, :σ_err)}=NamedTuple{(:μ, :μ_err, :σ, :σ_err)}(nothing, nothing, nothing, nothing), uncertainty::Bool=false) where T<:Unitful.Energy{<:Real}

    Performed a combined fit over all A/E Compton band using the f_aoe_compton function consisting of a gaussian SSE peak and a step like background for MSE events, assuming f_aoe_mu for μ and f_aoe_sigma for σ.

    Returns

    * `v_ml`: The fit result from the maximum-likelihood fit.
    * `report_μ`: Report to plot the combined fit result for the enery-dependence of `μ`.
    * `report_σ`: Report to plot the combined fit result for the enery-dependence of `σ`.
    * `report_bands`: Dict of NamedTuples of the fit report which can be plotted for each compton band
    source
    LegendSpecFits.fit_aoe_correctionsMethod

    fitaoecorrections(e::Array{<:Unitful.Energy{<:Real}}, μ::Array{<:Real}, σ::Array{<:Real})

    Fit the corrections for the AoE value of the detector.

    Returns

    • e: Energy values
    • μ: Mean values
    • σ: Sigma values
    • μ_scs: Fit result for the mean values
    • f_μ_scs: Fit function for the mean values
    • σ_scs: Fit result for the sigma values
    • f_σ_scs: Fit function for the sigma values
    source
    LegendSpecFits.fit_binned_double_gaussMethod
    fit_binned_double_gauss(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background, :μ, :σ), NTuple{7, T}}; uncertainty::Bool=true) where T<:Real

    Perform a binned fit of the peakshape to the data in h using the initial values in ps while using the f_double_gauss function consisting of a double gaussian peak. The priors for the first gaussian peak are given by the ps tuple. For the priors of the second gaussian peak a wide window around the first peak is used.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.fit_binned_trunc_gaussMethod
    fit_binned_trunc_gauss(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background, :μ, :σ), NTuple{7, T}}; uncertainty::Bool=true) where T<:Real

    Perform a binned fit of the peakshape to the data in h using the initial values in ps while using the f_gauss function consisting of a gaussian peak multiplied with an amplitude n.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.fit_calibrationMethod
    fit_calibration(pol_order::Int, µ::AbstractVector{<:Union{Real,Measurement{<:Real}}}, peaks::AbstractVector{<:Union{Real,Measurement{<:Real}}}; pull_t::Vector{<:NamedTuple}=fill(NamedTuple(), pol_order+1), v_init::Vector = [], uncertainty::Bool=true )

    Fit the calibration lines with polynomial function of polorder order polorder == 1 -> linear function pol_order == 2 -> quadratic function

    Returns

    * `result`: NamedTuple with the following fields
        * `par`: best-fit parameters
        * `gof`: godness of fit
    * `report`:
    source
    LegendSpecFits.fit_enc_sigmasMethod
    fit_enc_sigmas(enc_grid::Matrix{T}, enc_grid_rt::StepRangeLen{Quantity{<:T}, Base.TwicePrecision{Quantity{<:T}}, Base.TwicePrecision{Quantity{<:T}}, Int64}, min_enc::T, max_enc::T, nbins::Int64, rel_cut_fit::T) where T<:Real

    Fit the ENC values in enc_grid for each RT in enc_grid_rt with a Gaussian and return the optimal RT and the corresponding ENC value.

    Arguments

    • enc_grid: 2D array of ENC values for each RT in enc_grid_rt
    • enc_grid_rt: 1D array of RT values for which the ENC values in enc_grid are calculated
    • min_enc: minimum ENC value to consider for the fit
    • max_enc: maximum ENC value to consider for the fit
    • nbins: number of bins to use for the histogram of ENC values
    • rel_cut_fit: relative cut value to use for the fit

    Returns

    • rt: optimal RT value
    • min_enc: corresponding ENC value
    source
    LegendSpecFits.fit_fwhmFunction
    fitFWHM(fit_fwhm(peaks::Vector{T}, fwhm::Vector{T}) where T<:Real

    Fit the FWHM of the peaks to a quadratic function.

    Returns

    * `qbb`: the FWHM at 2039 keV
    * `err`: the uncertainties of the fit parameters
    * `v`: the fit result parameters
    * `f_fit`: the fitted function
    source
    LegendSpecFits.fit_fwhm_ftMethod
    fit_fwhm_ft(e_grid::Matrix, e_grid_ft::StepRangeLen, rt::Unitful.RealOrRealQuantity, min_e::T, max_e::T, rel_cut_fit::T, apply_ctc::Bool=true; kwargs...)
    fit_fwhm_ft(e_grid::Matrix, e_grid_ft::StepRangeLen, rt::Unitful.RealOrRealQuantity, min_e, max_e, rel_cut_fit; kwargs...)
    fit_fwhm_ft(e_grid::Matrix, e_grid_ft::StepRangeLen, qdrift::Vector{<:Real}, rt::Unitful.RealOrRealQuantity, min_e, max_e, rel_cut_fit; kwargs...)

    Fit the FWHM values in e_grid for each FT in e_grid_ft with a Gamma Peakshape and return the optimal FT and the corresponding FWHM value. The cut values cut for each flat-top time a window for better histogramming. If the apply_ctc flag is set to true, the CTC correction is applied to the energy values. Othwise, if a qdrift vector is provided, the CTC correction is applied to the energy values.

    Arguments

    • e_grid: 2D array of energy values for each FT in e_grid_ft
    • e_grid_ft: 1D array of FT values for which the FWHM values in e_grid are calculated
    • rt: RT value for which the FWHM values in e_grid are calculated
    • min_e: minimum energy value to consider for the fit
    • max_e: maximum energy value to consider for the fit
    • rel_cut_fit: relative cut value to use for the fit

    Returns

    • ft: optimal FT value
    • min_fwhm: corresponding FWHM value
    source
    LegendSpecFits.fit_half_centered_trunc_gaussMethod
    fit_half_centered_trunc_gauss(x::Array, cuts::NamedTuple{(:low, :high, :max), Tuple{Float64, Float64, Float64}})

    Fit a single truncated Gaussian to the data x between cut.low and cut.high. The peak center is fixed at μ and the peak is cut in half either in the left or right half.

    Returns report and result` with:

    * `f_fit`: fitted function
    * `μ`: mean of the Gaussian
    * `σ`: standard deviation of the Gaussian
    source
    LegendSpecFits.fit_half_trunc_gaussMethod
    fit_half_trunc_gauss(x::Array, cuts::NamedTuple{(:low, :high, :max), Tuple{Float64, Float64, Float64}})

    Fit a single truncated Gaussian to the data x between cut.low and cut.high. The peak center is fixed at μ and the peak is cut in half either in the left or right half.

    Returns report and result with:

    * `f_fit`: fitted function
    * `μ`: mean of the Gaussian
    * `σ`: standard deviation of the Gaussian
    source
    LegendSpecFits.fit_lq_comptonMethod
    fit_lq_compton(peakhists::Array, peakstats::StructArray, compton_bands::Array{T}) where T<:Real

    Fit the A/E Compton bands using the f_lq_compton function consisting of a gaussian SSE peak and a step like background for MSE events.

    Returns

    * `result`: Dict of NamedTuples of the fit results containing values and errors for each compton band
    * `report`: Dict of NamedTuples of the fit report which can be plotted for each compton band
    source
    LegendSpecFits.fit_peaksMethod
    fit_peaks(peakhists::Array, peakstats::StructArray, th228_lines::Array,; calib_type::Symbol=:th228, uncertainty::Bool=true, low_e_tail::Bool=true)

    Perform a fit of the peakshape to the data in peakhists using the initial values in peakstats to the calibration lines in th228_lines.

    Returns

    * `peak_fit_plots`: array of plots of the peak fits
    * `return_vals`: dictionary of the fit results
    source
    LegendSpecFits.fit_peaks_combinedMethod
    fit_peaks_combined(peakhists::Array, peakstats::StructArray, th228_lines::Array{T},; calib_type::Symbol=:th228, uncertainty::Bool=true, fixed_position::Bool=false) where T<:Real

    Fit the peaks of a histogram to a combined peakshape function while sharring parameters between peaks.

    source
    LegendSpecFits.fit_sf_wlMethod
    fit_sf_wl(dep_sep_data, a_grid_wl_sg, optimization_config)

    Fit a A/E filter window length for the SEP data and return the optimal window length and the corresponding survival fraction.

    Arguments

    • dep_sep_data: NamedTuple with the DEP and SEP data
    • a_grid_wl_sg: range of window lengths to sweep through
    • optimization_config: configuration dictionary

    Returns

    • result: optimal window length and corresponding survival fraction
    • report: report with all window lengths and survival fractions
    source
    LegendSpecFits.fit_single_aoe_comptonMethod
    fit_single_aoe_compton(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background, :μ, :σ), NTuple{7, T}}; uncertainty::Bool=true) where T<:Real

    Perform a fit of the peakshape to the data in h using the initial values in ps while using the f_aoe_compton function consisting of a gaussian SSE peak and a step like background for MSE events.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.fit_single_aoe_compton_with_fixed_μ_and_σMethod
    fit_single_aoe_compton_with_fixed_μ_and_σ(h::Histogram, μ::Number, σ::Number, ps::NamedTuple; uncertainty::Bool=true)

    Fit a single A/E Compton band using the f_aoe_compton function consisting of a gaussian SSE peak and a step like background for MSE events using fixed values for μ and σ.

    Returns

    * `neg_log_likelihood`: The negative log-likelihood of the likelihood fit
    * `report`: Dict of NamedTuples of the fit report which can be plotted for each compton band
    source
    LegendSpecFits.fit_single_lq_comptonMethod
    fit_single_lq_compton(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background, :μ, :σ), NTuple{7, T}}; uncertainty::Bool=true) where T<:Real

    Perform a fit of the peakshape to the data in h using the initial values in ps while using the f_lq_compton function consisting of a gaussian SSE peak and a step like background for MSE events.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.fit_single_peak_th228Method
    fit_single_peak_th228(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background), NTuple{5, T}};, uncertainty::Bool=true, fixed_position::Bool=false, low_e_tail::Bool=true) where T<:Real

    Perform a fit of the peakshape to the data in h using the initial values in ps while using the gamma_peakshape with low-E tail. Also, FWHM is calculated from the fitted peakshape with MC error propagation. The peak position can be fixed to the value in ps by setting fixed_position=true. If the low-E tail should not be fitted, it can be disabled by setting low_e_tail=false.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.fit_single_trunc_gaussMethod
    fit_single_trunc_gauss(x::Array, cuts::NamedTuple{(:low, :high, :max), Tuple{Float64, Float64, Float64}})

    Fit a single truncated Gaussian to the data x between min_x and max_x. Returns report and resultwith: *ffit: fitted function *μ: mean of the Gaussian *μerr: error of the mean *σ: standard deviation of the Gaussian *σ_err: error of the standard deviation *n`: number of counts in the peak

    source
    LegendSpecFits.fit_sipm_spectrumFunction
    fit_sipm_spectrum(pe_cal::Vector{<:Real}, min_pe::Real=0.5, max_pe::Real=3.5; 
        n_mixtures::Int=ceil(Int, (max_pe - min_pe) * 4), nIter::Int=50, nInit::Int=50, 
        method::Symbol=:kmeans, kind=:diag, Δpe_peak_assignment::Real=0.3, f_uncal::Function=identity, uncertainty::Bool=true)

    Fit a Gaussian Mixture Model to the given pe calibration data and return the fit parameters.

    Arguments

    • pe_cal::Vector{<:Real}: the pe calibration data
    • min_pe::Real=0.5: the minimum pe to consider
    • max_pe::Real=3.5: the maximum pe to consider
    • n_mixtures::Int=ceil(Int, (max_pe - min_pe) * 4): the number of mixtures to fit
    • nIter::Int=50: the number of iterations for the EM algorithm
    • nInit::Int=50: the number of initializations for the EM algorithm
    • method::Symbol=:kmeans: the method to use for initialization
    • kind::Symbol=:diag: the kind of covariance matrix to use
    • Δpe_peak_assignment::Real=0.3: the range to consider for peak assignment
    • f_uncal::Function=identity: the function to use for uncalibration
    • uncertainty::Bool=true: whether to calculate the uncertainty

    Returns

    • result: a tuple with the fit parameters
    • report: a tuple with the fit report which can be plotted via a recipe
    source
    LegendSpecFits.fit_subpeaks_th228Method
    fit_single_peak_th228(h::Histogram, ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background), NTuple{5, T}};, uncertainty::Bool=true, fixed_position::Bool=false, low_e_tail::Bool=true) where T<:Real

    Perform a simultaneous fit of two peaks (h_survived and h_cut) that together would form a histogram h, from which the result h_result was already determined using fit_single_peak_th228. Also, FWHM is calculated from the fitted peakshape with MC error propagation. The peak position can be fixed to the value in ps by setting fixed_position=true. If the low-E tail should not be fitted, it can be disabled by setting low_e_tail=false.

    Returns

    * `result`: NamedTuple of the fit results containing values and errors, in particular the signal survival fraction `sf` and the background survival frachtion `bsf`.
    * `report`: NamedTuple of the fit report which can be plotted
    source
    LegendSpecFits.gamma_peakshapeMethod
    gamma_peakshape(
        x::Real, μ::Real, σ::Real, n::Real,
        step_amplitude::Real, skew_fraction::Real, skew_width::Real,
        background::Real;  
        skew_fraction_highE::Real = 0.0, skew_width_highE::Real= 0.0, 
        background_kwargs... 
    )

    Standard gamma peakshape: Describes the shape of a typical gamma peak in a detector. Components:

    • Gaussian signal peak with μ, σ, n - skew_fraction - skew_fraction_highE
    • low-energy tail: skew_fraction, skew_width
    • high-energy tail: skew_fraction_highE, skew_width_highE (optional, default off)
    • background:
      • energy-independent background
      • step-function scaled with step_amplitude from Compton scattered gammas
      • linear slope: background_slope (optional, default off)
      • exponential decay: background_exp (optional, default off)
    source
    LegendSpecFits.generate_aoe_compton_bandsMethod
    generate_aoe_compton_bands(aoe::Vector{<:Real}, e::Vector{<:T}, compton_bands::Vector{<:T}, compton_window::T) where T<:Unitful.Energy{<:Real}

    Generate histograms for the A/E Compton bands and estimate peak parameters. The compton bands are cutted out of the A/E spectrum and then binned using the Freedman-Diaconis Rule. For better performance the binning is only done in the area around the peak. The peak parameters are estimated using the estimate_single_peak_stats_psd function.

    Returns

    * `peakhists`: Array of histograms for each compton band
    * `peakstats`: StructArray of peak parameters for each compton band
    * `min_aoe`: Array of minimum A/E values for each compton band
    * `max_aoe`: Array of maximum A/E values for each compton band
    * `mean_peak_pos`: Mean peak position of all compton bands
    * `std_peak_pos`: Standard deviation of the peak position of all compton bands
    * `simple_pars_aoe_μ`: Simple curve fit parameters for the peak position energy depencence
    * `simple_pars_error_aoe_μ`: Simple curve fit parameter errors for the peak position energy depencence
    * `simple_pars_aoe_σ`: Simple curve fit parameters for the peak sigma energy depencence
    * `simple_pars_error_aoe_σ`: Simple curve fit parameter errors for the peak sigma energy depencence
    source
    LegendSpecFits.get_centered_gaussian_window_cutMethod
    get_centered_gaussian_window_cut(x::Array, min_x::Float64, max_x::Float64, n_σ::Real, center::Float64=0.0, n_bins_cut::Int=500, relative_cut::Float64=0.2, left::Bool=false)

    Cut out a single peak from the array x between min_x and max_x by fitting a truncated one-sided Gaussian and extrapolating a window cut with n_σ standard deviations. The center and side of the fit can be specified with left and center variable.

    Returns

    * `low_cut`: lower edge of the cut peak
    * `high_cut`: upper edge of the cut peak
    * `center`: center of the peak
    * `σ`: standard deviation of the Gaussian
    * `low_cut_fit`: lower edge of the cut peak from the fit
    * `high_cut_fit`: upper edge of the cut peak from the fit
    * `err`: error of the fit parameters
    source
    LegendSpecFits.get_continuum_survival_fractionMethod
    get_continuum_survival_fraction(aoe::Vector{<:Unitful.RealOrRealQuantity}, e::Vector{<:T}, center::T, window::T, aoe_cut::Unitful.RealOrRealQuantity,; inverted_mode::Bool=false, sigma_high_sided::Unitful.RealOrRealQuantity=Inf*unit(first(aoe))) where T<:Unitful.Energy{<:Real}

    Get the survival fraction of a continuum after a AoE cut value aoe_cut for a given center and window size.

    Returns

    • center: Center of the continuum
    • window: Window size
    • n_before: Number of counts before the cut
    • n_after: Number of counts after the cut
    • sf: Survival fraction
    source
    LegendSpecFits.get_low_aoe_cutMethod
    get_low_aoe_cut(aoe::Vector{<:Unitful.RealOrRealQuantity}, e::Vector{<:T},; 
            dep::T=1592.53u"keV", window::Vector{<:T}=[12.0, 10.0]u"keV", dep_sf::Float64=0.9, rtol::Float64=0.001, maxiters::Int=300, sigma_high_sided::Float64=Inf,
            cut_search_interval::Tuple{<:Unitful.RealOrRealQuantity, <:Unitful.RealOrRealQuantity}=(-25.0*unit(first(aoe)), 1.0*unit(first(aoe))), 
            bin_width_window::T=3.0u"keV", max_e_plot::T=3000.0u"keV",  plot_window::Vector{<:T}=[12.0, 50.0]u"keV",
            fixed_position::Bool=true, fit_func::Symbol=:gamma_def, uncertainty::Bool=true) where T<:Unitful.Energy{<:Real}

    Get the AoE cut value for a given dep and window size while performing a peak fit with fixed position. The AoE cut value is determined by finding the cut value for which the number of counts after the cut is equal to dep_sf times the number of counts before the cut. The algorhithm utilizes a root search algorithm to find the cut value with a relative tolerance of rtol.

    Returns

    • cut: AoE cut value
    • n0: Number of counts before the cut
    • nsf: Number of counts after the cut
    source
    LegendSpecFits.get_mc_value_shapesMethod
    get_mc_value_shapes(v::NamedTuple, v_err::NamedTuple, n::Integer)

    Return a NamedTuple with the same fields as v and v_err but with Normal distributions for each field.

    source
    LegendSpecFits.get_mc_value_shapesMethod
    get_mc_value_shapes(v::NamedTuple, v_err::Matrix, n::Integer)

    Generate n random samples of fit parameters using their respective best-fit values v and covariance matrix v_err

    source
    LegendSpecFits.get_peak_fwhm_th228Function
    get_peak_fwhm_th228(v_ml::NamedTuple, v_ml_err::NamedTuple)

    Get the FWHM of a peak from the fit parameters while performing a MC error propagation.

    Returns

    * `fwhm`: the FWHM of the peak
    * `fwhm_err`: the uncertainty of the FWHM of the peak
    source
    LegendSpecFits.get_peak_survival_fractionMethod
    get_peak_survival_fraction(aoe::Vector{<:Unitful.RealOrRealQuantity}, e::Vector{<:T}, peak::T, window::Vector{T}, aoe_cut::Unitful.RealOrRealQuantity,; 
    uncertainty::Bool=true, inverted_mode::Bool=false, bin_width_window::T=2.0u"keV", sigma_high_sided::Unitful.RealOrRealQuantity=Inf*unit(first(aoe)), fit_func::Symbol=:gamma_def) where T<:Unitful.Energy{<:Real}

    Get the survival fraction of a peak after a AoE cut value aoe_cut for a given peak and window size while performing a peak fit with fixed position.

    Returns

    • peak: Peak position
    • n_before: Number of counts before the cut
    • n_after: Number of counts after the cut
    • sf: Survival fraction
    • err: Uncertainties
    source
    LegendSpecFits.get_peakhists_th228Method
    get_peakhists_th228(e::Array, th228_lines::Array, window_sizes::Array, e_unit::String="keV", proxy_binning_peak::Float64=2103.5, proxy_binning_peak_window::Float64=10.0)

    Create histograms around the calibration lines and return the histograms and the peak statistics.

    Returns

    * `peakhists`: array of histograms around the calibration lines
    * `peakstats`: array of statistics for the calibration line fits
    source
    LegendSpecFits.get_peaks_survival_fractionsMethod
    get_peaks_survival_fractions(aoe::Vector{<:Unitful.RealOrRealQuantity}, e::Vector{<:T}, peaks::Vector{<:T}, peak_names::Vector{Symbol}, windows::Vector{<:Tuple{T, T}}, aoe_cut::Unitful.RealOrRealQuantity,; uncertainty::Bool=true, inverted_mode::Bool=false, bin_width_window::T=2.0u"keV", sigma_high_sided::Unitful.RealOrRealQuantity=Inf*unit(first(aoe)), fit_funcs::Vector{Symbol}=fill(:gamma_def, length(peaks))) where T<:Unitful.Energy{<:Real}

    Get the survival fraction of a peak after a AoE cut value aoe_cut for a given peak and window size while performing a peak fit with fixed position.

    Return

    • result: Dict of results for each peak
    • report: Dict of reports for each peak
    source
    LegendSpecFits.get_residualsMethod
    residuals(f_fit::Base.Callable, h::Histogram{<:Real,1},v_ml::Union{NamedTuple, AbstractVector})

    Calculate bin-wise residuals and normalized residuals. Calcualte bin-wise p-value based on poisson distribution for each bin.

    Input:

    • f_fitfunction handle of fit function (peakshape)
    • h histogram of data
    • v_ml best-fit parameters

    Returns:

    • residuals difference: model - data (histogram bin count)
    • residuals_norm normalized residuals: model - data / sqrt(model)
    • p_value_binwise p-value for each bin based on poisson distribution
    source
    LegendSpecFits.get_sf_after_aoe_cutMethod
    get_sf_after_aoe_cut(aoe_cut::Unitful.RealOrRealQuantity, aoe::Vector{<:Unitful.RealOrRealQuantity}, e::Vector{<:T}, peak::T, window::Vector{T}, bin_width::T, result_before::NamedTuple; uncertainty::Bool=true, fit_func::Symbol=:gamma_def) where T<:Unitful.Energy{<:Real}

    Get the survival fraction after a AoE cut value aoe_cut for a given peak and window size from a combined fit to the survived and cut histograms.

    Returns

    • sf: Survival fraction after the cut
    source
    LegendSpecFits.get_th228_fit_functionsMethod
    get_th228_fit_functions(; background_center::Union{Real,Nothing} = nothing)

    This function defines the gamma peakshape fit functions used in the calibration specfits.

    • gamma_def: "default" gamma peakshape with gaussian signal, low-energy tail, and background (flat + step)
    • gamma_tails: default gamma peakshape + high-energy tail
    • gamma_bckSlope: default gamma peakshape + linear background slope
    • gamma_bckExp: default gamma peakshape + exponential background
    • gamma_bckFlat: default gamma peakshape - step background (only flat component!)
    • gammatailsbckFlat: default gamma peakshape + high-energy tail - step background (only flat component!)
    source
    LegendSpecFits.highEtail_peakshapeMethod
    highEtail_peakshape(
        x::Real, μ::Real, σ::Real, n::Real,
        skew_fraction::Real, skew_width::Real,
    )

    Describes the high-E signal tail part of the shape

    source
    LegendSpecFits.hist_loglikeMethod
    hist_loglike(f_fit::Base.Callable, h::Histogram{<:Real,1})

    Calculate the Poisson log-likelihood of a fit function f_fit(x) and a histogram h. f_fit must accept all values x on the horizontal axis of the histogram.

    Currently uses a simple midpoint-rule integration of f_fit over the bins of h.

    source
    LegendSpecFits.lowEtail_peakshapeMethod
    lowEtail_peakshape(
        x::Real, μ::Real, σ::Real, n::Real,
        skew_fraction::Real, skew_width::Real,
    )

    Describes the low-E signal tail part of the shape of a typical gamma peak in a detector.

    source
    LegendSpecFits.lq_drift_time_correctionMethod
    lq_norm::Vector{Float64}, dt_eff::Vector{<:Unitful.RealOrRealQuantity}, e_cal::Vector{<:Unitful.Energy{<:Real}}, DEP_µ::Unitful.AbstractQuantity, DEP_σ::Unitful.AbstractQuantity; 
    DEP_edgesigma::Float64=3.0 , mode::Symbol=:percentile, drift_cutoff_sigma::Float64 = 2.0, prehist_sigma::Float64=2.5, e_expression::Union{String,Symbol}="e", dt_eff_low_quantile::Float64=0.15, dt_eff_high_quantile::Float64=0.95)

    Perform the drift time correction on the LQ data using the DEP peak. The function cuts outliers in lq and drift time, then performs a linear fit on the remaining data. The data is Corrected by subtracting the linear fit from the lq data.

    Returns

    * `result`: NamedTuple of the function used for lq classifier construction
    * `report`: NamedTuple of the histograms used for the fit, the cutoff values and the DEP edges
    source
    LegendSpecFits.nearestSPDMethod
    nearestSPD(A::Matrix{<:Real})

    Returns the nearest positive definite matrix to A Calculation is based on matrix factorization techniques described in https://www.sciencedirect.com/science/article/pii/0024379588902236

    source
    LegendSpecFits.p_valueMethod
    p_value(f_fit::Base.Callable, h::Histogram{<:Real,1},v_ml::Union{NamedTuple, AbstractVector})

    calculate p-value based on least-squares, assuming gaussian uncertainty baseline method to get goodness-of-fit (gof)

    input:

    • f_fitfunction handle of fit function (peakshape)
    • h histogram of data
    • v_ml best-fit parameters

    returns:

    • pval p-value of chi2 test
    • chi2 chi2 value
    • dof degrees of freedom
    source
    LegendSpecFits.p_value_MCMethod
    p_value_MC(f_fit::Base.Callable, h::Histogram{<:Real,1},ps::NamedTuple{(:peak_pos, :peak_fwhm, :peak_sigma, :peak_counts, :mean_background)},v_ml::NamedTuple,;n_samples::Int64=1000)

    alternative p-value calculation via Monte Carlo sampling. Warning: computational more expensive than pvaule() and pvalue_LogLikeRatio()

    Input:

    • f_fitfunction handle of fit function (peakshape)
    • h histogram of data
    • ps best-fit parameters
    • v_ml best-fit parameters
    • n_samples number of samples

    Performed Steps:

    • Create n_samples randomized histograms. For each bin, samples are drawn from a Poisson distribution with λ = model peak shape (best-fit parameter)
    • Each sample histogram is fit using the model function f_fit
    • For each sample fit, the max. loglikelihood fit is calculated

    Returns

    • % p value –> comparison of sample max. loglikelihood and max. loglikelihood of best-fit
    source
    LegendSpecFits.p_value_poissonllMethod
    p_value_poissonll(f_fit::Base.Callable, h::Histogram{<:Real,1},v_ml::Union{NamedTuple, AbstractVector})

    p-value via poisson likelihood ratio: baseline for ML fits using Poisson statistics and bins with low number of counts

    source
    LegendSpecFits.peakshape_componentsMethod
    peakshape_components(fit_func::Symbol; background_center::Real)

    This function defines the components (signal, low/high-energy tail, backgrounds) of the fit function used in gamma specfits. These component functions are used in the fit-report and in plot receipes

    source
    LegendSpecFits.prepare_sep_peakhistMethod
    prepare_sep_peakhist(e::Array{T}, dep::T,; relative_cut::T=0.5, n_bins_cut::Int=500) where T<:Real

    Prepare an array of uncalibrated SEP energies for parameter extraction and calibration.

    Returns

    • result: Result of the initial fit
    • report: Report of the initial fit
    source
    LegendSpecFits.pulser_cal_qcMethod
    pulser_cal_qc(data, pulser_config; n_pulser_identified=100)

    Perform simple QC cuts on the data and return the data for energy calibration.

    Returns

    - pulser_idx: indices of the pulser events
    source
    LegendSpecFits.signal_peakshapeMethod
    signal_peakshape(
        x::Real, μ::Real, σ::Real, n::Real,
        skew_fraction::Real;  skew_fraction_highE::Real = 0.0
    )

    Describes the signal part of the shape of a typical gamma peak in a detector.

    source
    LegendSpecFits.simple_calibrationFunction
    simple_calibration(e_uncal::Array, th228_lines::Array, window_size::Float64=25.0, n_bins::Int=15000, calib_type::String="th228")

    Perform a simple calibration for the uncalibrated energy array e_uncal using the calibration type calib_type and the calibration lines th228_lines. The window size is the size of the window around the calibration line to use for the calibration. The number of bins is the number of bins to use for the histogram.

    Returns * h_calsimple: histogram of the calibrated energy array * h_uncal: histogram of the uncalibrated energy array * c: calibration factor * fep_guess: estimated full energy peak (FEP) * peakhists: array of histograms around the calibration lines * peakstats: array of statistics for the calibration line fits

    source
    LegendSpecFits.sipm_simple_calibrationFunction
    sipm_simple_calibration(pe_uncal::Array)

    Perform a simple calibration for the uncalibrated p.e. spectrum array pe_uncal using just the 1 p.e. and 2 p.e. peak positions estimated by a peakfinder.

    Inputs: * pe_uncal: array of uncalibrated peak amplitudes kwargs: * initial_min_amp: uncalibrated amplitude value as a left boundary to build the uncalibrated histogram where the peak search is performed on. For the peak search with noise peak, this value is consecutively increased i.o.t exclude the noise peak from the histogram. * initial_max_quantile: quantile of the uncalibrated amplitude array to used as right boundary to build the uncalibrated histogram * peakfinder_σ: sigma value in number of bins for peakfinder * peakfinder_threshold: threshold value for peakfinder

    Returns * pe_simple_cal: array of the calibrated pe array with the simple calibration * func: function to use for the calibration (pe_simple_cal = pe_uncal .* c .+ offset) * c: calibration factor * offset: calibration offset * peakpos: 1 p.e. and 2 p.e. peak positions in uncalibrated amplitude * peakpos_cal: 1 p.e. and 2 p.e. peak positions in calibrated amplitude * h_uncal: histogram of the uncalibrated pe array * h_calsimple: histogram of the calibrated pe array with the simple calibration

    source
    LegendSpecFits.step_gaussMethod
    step_gauss(x::Real, μ::Real, σ::Real)

    Evaluates the convulution of a Heaviside step function and the PDF of Normal(μ, σ) at x.

    The result does not correspond to a PDF as it is not normalizable.

    source
    LegendSpecFits.tuple_to_arrayMethod
    tuple_to_array(nt::NamedTuple, fields::Vector{Symbol})

    Return an array with the values of the fields in nt in the order given by fields.

    source
    LegendSpecFits.weibull_from_mxFunction
    weibull_from_mx(m::Real, x::Real, p_x::Real = 0.6827)::Weibull

    Construct a Weibull distribution with a given median m and a given p_x-quantile x.

    Useful to construct priors for positive quantities.

    source